Soil nutrient removal by four potential bioenergy crops: Zea mays, Panicum virgatum, Miscanthus×giganteus, and prairie

نویسندگان

  • Michael D. Masters
  • Christopher K. Black
  • Ilsa B. Kantola
  • Krishna P. Woli
  • Thomas Voigt
  • Mark B. David
  • Evan H. DeLucia
چکیده

Replacing annual row crops with perennial grasses for bioenergy represents a landscape-level change in species composition, with the potential to impact annual soil nutrient removal on a regional scale. In this study we measured the concentration of ten essential nutrients in harvested material from three potential perennial bioenergy crops: Panicum virgatum L., Miscanthus giganteus, and a reestablished prairie to determine annual soil nutrient removals. We compared perennial bioenergy crops to nutrient removals by annual cropping systems of Zea mays L. (maize) and Glycine max L. (soybean) in Illinois. Crops were grown under management practices typical for the Midwest, US. In addition, we examined geographic variation in nutrient removal of M. giganteus at four US locations. Total removal of N, P, K, Ca, Mg, S, Fe, Mn, Na, and Zn was significantly greater in maize than in any of the perennials. Removal of N, P, and K in M. giganteus was 3.7, 1.8, and 1.8% of the removal in maize, and 49.0, 17.4, and 31.9% of the removal in soybean respectively. At sites in Illinois, Kentucky, Nebraska, and New Jersey we found differences in N and K removal by M. giganteus that corresponded with differences in biomass. There was no effect of fertilization on M. giganteus biomass, but removal of N, S, and Mg increased and P removal decreased with increasing rates of urea fertilization. Cultivation of M. giganteus and switchgrass on land formerly used for row crops may reduce the need for nutrient additions and potential losses of nutrients to groundwater and the atmosphere. ã 2015 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Biogeochemical Cycles of Bioenergy Crops Reveal Nitrogen-Fixation and Low Greenhouse Gas Emissions in a Miscanthus 3 giganteus Agro-Ecosystem

We evaluated the biogeochemical cycling and relative greenhouse gas (GHG) mitigation potential of proposed biofuel feedstock crops by modeling growth dynamics of Miscanthus 9 giganteus Greef et Deuter (miscanthus), Panicum virgatum L. (switchgrass), Zea mays L. (corn), and a mixed prairie community under identical field conditions. DAYCENT model simulations for miscanthus were parameterized wit...

متن کامل

The influence of drought and heat stress on long-term carbon fluxes of bioenergy crops grown in the Midwestern USA.

Perennial grasses are promising feedstocks for bioenergy production in the Midwestern USA. Few experiments have addressed how drought influences their carbon fluxes and storage. This study provides a direct comparison of ecosystem-scale measurements of carbon fluxes associated with miscanthus (Miscanthus × giganteus), switchgrass (Panicum virgatum), restored native prairie and maize (Zea mays)/...

متن کامل

Carbon and nitrogen dynamics in bioenergy ecosystems: 2. Potential greenhouse gas emissions and global warming intensity in the conterminous United States

This study estimated the potential emissions of greenhouse gases (GHG) from bioenergy ecosystems with a biogeochemical model AgTEM, assuming maize (Zea mays L.), switchgrass (Panicum virgatum L.), and Miscanthus (Miscanthus 9 giganteus) will be grown on the current maize-producing areas in the conterminous United States. We found that the maize ecosystem acts as a mild net carbon source while c...

متن کامل

Bioenergy crops Miscanthus x giganteus and Panicum virgatum reduce growth and survivorship of Spodoptera frugiperda (Lepidoptera: Noctuidae).

Large-scale cultivation of plants used as biofuels is likely to alter the ecological interactions of current agricultural crops and their insect pests in a myriad of ways. Recent evidence suggests many contemporary maize pests will be able to use potential biofuel crops such as switchgrass, Panicum virgatum L., and miscanthus as hosts. To determine how suitable these biofuels are to the maize, ...

متن کامل

Silica and nitrogen modulate physical defense against chewing insect herbivores in bioenergy crops Miscanthus x Giganteus and Panicum virgatum (Poaceae).

Feedstock crops selected for bioenergy production to date are almost exclusively perennial grasses because of favorable physiological traits that enhance growth, water use, and nutrient assimilation efficiency. Grasses, however, tend to rely primarily on physical defenses, such as silica, to deter herbivores. Silica impedes processing of feedstocks and introduces a trade-off between managing fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015